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Abstract

In this paper, we consider Runge–Kutta–Nyström (RKN) methods applied to nonlinear Schrödinger equations with
variable coefficients (NLSEvc). Concatenating symplectic Nyström methods in spatial direction and symplectic Runge–
Kutta methods in temporal direction for NLSEvc leads to multi-symplectic integrators, i.e. to numerical methods which
preserve the multi-symplectic conservation law (MSCL), we present the corresponding discrete version of MSCL. It is
shown that the multi-symplectic RKN methods preserve not only the global symplectic structure in time, but also local
and global discrete charge conservation laws under periodic boundary conditions. We present a (4-order) multi-symplectic
RKN method and use it in numerical simulation of quasi-periodically solitary waves for NLSEvc, and we compare the
multi-symplectic RKN method with a non-multi-symplectic RKN method on the errors of numerical solutions, the numer-
ical errors of discrete energy, discrete momentum and discrete charge. The precise conservation of discrete charge under the
multi-symplectic RKN discretizations is attested numerically. Some numerical superiorities of the multi-symplectic RKN
methods are revealed.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The nonlinear Schrödinger equation in its many versions is one of the most important models of mathemat-
ical physics, with applications to different fields such as plasma physics, nonlinear optics, water waves,
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bimolecular dynamics and many other fields. And many numerical methods have been developed to solve it
(see [5–7,9,13,14,19,21] and references therein). In the last two decades, symplectic methods have predomi-
nated over non-symplectic schemes for long-time numerical computations and nowadays applied to many
fields of science which include celestial mechanics, quantum physics, statistics and so on [1,6,12,15,20]. The
multi-symplectic integrators which preserve the discrete form of the multi-symplectic conservation law have
been suggested in [3,19]. Some results on multi-symplectic methods have been presented in [1,3,7–
11,13,14,16–19] and references therein. For Hamiltonian partial differential equations (PDEs) with constant
coefficients, Reich in [19] considered Hamiltonian wave equations, and showed that the Gauss–Legendre dis-
cretization applied to the scalar wave equation (also to the nonlinear Schrödinger equation) both in temporal
and spatial directions, leads to a multi-symplectic integrator (also see [10,13]), and some sufficient conditions
for multi-symplecticity of partitioned Runge–Kutta (PRK) methods applied to Hamiltonian PDEs have been
presented by Hong et al. [10], it has been shown that concatenating symplectic PRK methods in temporal and
spatial directions leads to the multi-symplectic integrators, and some conservative properties on charge, energy
and momentum for multi-symplectic Gauss–Legendre methods, multi-symplectic Runge–Kutta methods and
multi-symplectic partitioned Runge–Kutta methods have been discussed in [10,11,13,14,17,19] and some ref-
erences therein. Authors of [7–9] developed multi-symplectic methods, mainly centred box scheme, for some
Hamiltonian PDEs with variable coefficients, including linear (nonlinear) Schrödinger equations and KdV
equations, and related numerical analysis.

Now we pay attention to the special symplectic methods for special kinds of Hamiltonian ordinary differ-
ential equations. Nyström methods for the second order differential equation ÿ = g(y),
li ¼ gðy0 þ cih _y0 þ h2Ps
j¼1aijljÞ;

y1 ¼ y0 þ h _y0 þ h2Ps
i¼1bili; _y1 ¼ _y0 þ h

Ps
i¼1bili;

(

are very useful and important in applications to some practical situations. In [22,23] (also see [6,20]), Suris
obtained the symplectic conditions of Nyström methods as follows:
bi ¼ bið1� ciÞ for i ¼ 1; . . . ; s;

biðbj � aijÞ ¼ bjðbi � ajiÞ for i; j ¼ 1; . . . ; s;

(

which are very interesting, and guarantees the conservation of quadratic invariants ([6,15,20]).
In this paper, we consider nonlinear Schrödinger equations with variable coefficients (NLSEvc), which are

proposed in [21] and have multi-symplectic conservation law and some physical conservative quantities ([7,9]).
Because the derivative in NLSEvc in spatial direction is of second order, we apply symplectic Nyström meth-
ods in spatial direction and symplectic Runge–Kutta methods in temporal direction. Naturally, one wonders
whether such concatenation methods lead to the multi-symplectic integrators, and whether they preserve clas-
sical conservation laws, such as the global symplecticity in time and the charge conservation laws and so on. In
this paper, we show that such numerical methods preserve the multi-symplectic conservation law (so called
multi-symplectic Runge–Kutta–Nyström (RKN) methods), and some important properties, such as the global
symplecticity in time and the charge conservation law are also preserved. The charge conservation law can be
seen as a quadratic invariant which is, in generical, not preserved by the symplectic integrators, even in the
case of Hamiltonian ODEs ([6,15,20]). For the purpose of application, we proposed a (4-order) multi-symplec-
tic RKN method and make use of it in the numerical simulation of quasi-periodically solitary waves of
NLSEvc. In the numerical comparison with a (4-order) non multi-symplectic RKN method, we find out some
superiorities of multi-symplectic RKN methods in numerical computation for NLSEvc.

This paper is organized as follows: In Section 2, we present the condition of multi-symplecticity of RKN
methods. In order to study the classical conservative properties of multi-symplectic RKN methods, we discuss
some local and global conservation laws, e.g., energy, momentum and charge, for NLSEvc. In Section 3, we
show that the multi-symplectic RKN methods have the global symplectic conservation in time, and prove that
they have the local discrete charge conservative property, thus have the global one which is very important in the
application to some physical problems. In Section 4, in order to illustrate our theoretical results, we present a 4-
order multi-symplectic RKN method and give some numerical experiments, especially, some numerical compar-
isons with a (4-order) non multi-symplectic RKN method. The conclusion of this paper is presented in Section 5.
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2. Conservation laws

2.1. Multi-symplectic conservation law

We consider the following nonlinear Schrödinger equation with variable coefficients (NLSEvc)
iotwþ aðtÞoxxwþ hðtÞV 0ðjwj2Þw ¼ 0; ðx; tÞ 2 U � R2; ð2:1Þ

where V, a and h are smooth functions from R to R (for more details of (2.1), see [7,9,21]). Let w = q + i p.
Then (2.1) can be written in the form
otq ¼ �aðtÞoxxp � hðtÞV 0ðq2 þ p2Þp; ð2:2aÞ
otp ¼ aðtÞoxxqþ hðtÞV 0ðq2 þ p2Þq: ð2:2bÞ
We introduce a pair of conjugate momenta v = qx, w = px and obtain a Hamiltonian PDE
Motzþ Koxz ¼ rzSðz; tÞ; ð2:3Þ

where z ¼ ðq; p; v;wÞT, M and K are skew-symmetric matrices,
M ¼

0 �1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA; K ¼ aðtÞ

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

0
BBB@

1
CCCA;
and the smooth function Sðz; tÞ ¼ � 1
2
hðtÞV ðq2 þ p2Þ � 1

2
aðtÞðv2 þ w2Þ. Eq. (2.3) has a multi-symplectic conser-

vation law (see [2,3,7,9,13–15])
ox
ot
þ oj

ox
¼ 0; ð2:4Þ
where x and j are pre-symplectic forms,
x ¼ 1

2
dz ^M dz and j ¼ 1

2
dz ^ K dz: ð2:5Þ
The corresponding equations for the differential one forms da ¼ ðdq; dp; dv; dwÞT are given by
ot dqþ aðtÞox dw ¼ �hðtÞ½V 0ðq2 þ p2Þdp þ ð2pqdqþ 2p2 dpÞV 00ðq2 þ p2Þ�; ð2:6aÞ
� ot dp þ aðtÞox dv ¼ �hðtÞ½V 0ðq2 þ p2Þdqþ ð2pqdp þ 2q2 dqÞV 00ðq2 þ p2Þ�; ð2:6bÞ
ox dq ¼ dv; ð2:6cÞ
ox dp ¼ dw; ð2:6dÞ
where we use the fact that the exterior derivative operator d can commute with the partial derivative operators
ot or ox. From (2.6a), (2.6b) it follows that
ot dq ^ dp þ aðtÞox dw ^ dp ¼ �2hðtÞqpV 00ðq2 þ p2Þdq ^ dp; ð2:7aÞ
� ot dp ^ dqþ aðtÞox dv ^ dq ¼ �2hðtÞqpV 00ðq2 þ p2Þdp ^ dq: ð2:7bÞ
This leads the multi-symplectic conservation law(MSCL)
otðdp ^ dqÞ þ aðtÞoxðdq ^ dvþ dp ^ dwÞ ¼ 0: ð2:8Þ

Now we rewrite (2.3) as the following form
� aðtÞoxv ¼ �otp þ hðtÞV 0ðq2 þ p2Þq; ð2:9aÞ
� aðtÞoxw ¼ otqþ hðtÞV 0ðq2 þ p2Þp; ð2:9bÞ
oxq ¼ v; ð2:9cÞ
oxp ¼ w: ð2:9dÞ
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Now let us consider the multi-symplecticity of concatenating Nyström methods in spatial direction and
Runge–Kutta methods in temporal direction for NLSEvc (2.1). In order to process the numerical discretizai-
ton, we introduce a uniform grid [12] ðxj; tkÞ 2 R2 with mesh-length Dt in the t-direction and mesh-length Dx in
the x-direction, and denote the value of the function w(x,t) at the mesh point ðxj; tkÞ by wk

j . For (2.9a)–(2.9d),
in x-direction applying an s-stage Nyström method, with coefficients fam;jg; fbmg; fbmg and {cm}, and in
t-direction applying an r-stage Runge–Kutta method with coefficients f~ak;ig; f~bkg and ~dk ¼

Ps
j¼1~akj, it is con-

cluded that
Qk
l;m ¼ qk

l þ cmDxvk
l þ Dx2

Xs

j¼1

amjoxxQ
k
l;j; ð2:10aÞ

P k
l;m ¼ pk

l þ cmDxwk
l þ Dx2

Xs

j¼1

amjoxxP k
l;j; ð2:10bÞ

vk
lþ1 ¼ vk

l þ Dx
Xs

m¼1

bmoxxQ
k
l;m; ð2:10cÞ

wk
lþ1 ¼ wk

l þ Dx
Xs

m¼1

bmoxxP k
l;m; ð2:10dÞ

qk
lþ1 ¼ qk

l þ Dxvk
l þ Dx2

Xs

m¼1

bmoxxQ
k
l;m; ð2:10eÞ

pk
lþ1 ¼ pk

l þ Dxwk
l þ Dx2

Xs

m¼1

bmoxxP k
l;m; ð2:10fÞ

Qk
l;m ¼ q0

l;m þ Dt
Xr

i¼1

~akiotQ
i
l;m; ð2:10gÞ

P k
l;m ¼ p0

l;m þ Dt
Xr

i¼1

~akiotP i
l;m; ð2:10hÞ

q1
l;m ¼ q0

l;m þ Dt
Xr

k¼1

~bkotQ
k
l;m; ð2:10iÞ

p1
l;m ¼ p0

l;m þ Dt
Xr

k¼1

~bkotP k
l;m; ð2:10jÞ

otQ
k
l;m ¼ �akoxxP k

l;m � hkV 0ðQk
l;mÞ

2 þ ðP k
l;mÞ

2P k
l;m; ð2:10kÞ

otP k
l;m ¼ akoxxQ

k
l;m þ hkV 0ðQk

l;mÞ
2 þ ðP k

l;mÞ
2Qk

l;m: ð2:10lÞ
The notations above are in the following sense, Qk
l;m � qððlþ cmÞDx; ~dkDtÞ; qk

l � qðlDx; ~dkDtÞ;
otQ

k
l;m � otqððlþ cmÞDx; ~dkDtÞ, oxxQ

k
l;m � oxxqððlþ cmÞDx; ~dkDtÞ, P k

l;m � pððlþ cmÞDx; ~dkDtÞ, pk
l � p ðlDx; ~dkDtÞ,

otP k
l;m � otpððlþ cmÞDx; ~dkDtÞ, oxxP k

l;m � oxxpððlþ cmÞDx; ~dkDtÞ, vk
l � vðlDx; ~dkDtÞ, ak ¼ að~dkDtÞ,hk ¼

hð~dkDtÞ, p0
l;m � pððlþ cmÞDx; 0Þ, q0

l;m � qððlþ cmÞDx; 0Þ, p1
l;m � pððlþ cmÞDx;DtÞ, q1

l;m � qððlþ cmÞDx;DtÞ, and

so on.
The following result is the characterization of multi-symplectic RKN methods for NLSEvc, it has a similar

proof (therefore omitted) to the results in [10,14,19].

Theorem 1. In the method (2.10a)–(2.10l), if
bm ¼ bmð1� cmÞ; bmðbj � amjÞ ¼ bjðbm � ajmÞ; for m; j ¼ 1; 2; . . . ; s; ð2:11Þ
and
~bk
~bi ¼ ~bk~aki þ ~bi~aik; for i; k ¼ 1; 2; . . . ; r; ð2:12Þ
then the method (2.10a)–(2.10l) is multi-symplectic with the discrete multi-symplectic conservation law
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Dx
Xs

m¼1

bmðdq1
l;m ^ dp1

l;m � dq0
l;m ^ dp0

l;mÞ

� Dt
Xr

k¼1

~bka
kðdqk

lþ1 ^ dvk
lþ1 � dqk

l ^ dvk
l þ dpk

lþ1 ^ dwk
lþ1 � dpk

l ^ dwk
l Þ ¼ 0:

ð2:13Þ
2.2. Some important classical conservation laws and their discretizations

As a preparation of the further discussion, we present some classical conservation laws. For the Hamilto-
nian PDE (2.3), it has a local momentum conservation law (MCL)
oI
ot
þ oG

ox
¼ 0 ð2:14Þ
with momentum density I ¼ 1
2
zTMzx and momentum flux G ¼ SðzÞ � 1

2
zTMzt. Evidently, we can rewrite I(z)

and G(z) as the following compact forms
IðzÞ ¼ 1

2
IðoxwwÞ and GðzÞ ¼ � 1

2
IðotwwÞ � aðtÞ

2
joxwj2 �

hðtÞ
2

V ðjwj2Þ;
where I denotes the imaginary part of complex number.
Now we take a product with (2.3) by (Mz)T and notice that ðMzÞTrzSðzÞ vanishes, it follows that

ðMzÞTMzt þ ðMzÞTKzx ¼ 0. Since zT
x MTKz ¼ 0, the above equation can be written as
otððMzÞTMzÞ þ oxð2zTMTKzÞ ¼ 0: ð2:15Þ
It is equivalent to a compact form
otðjwj2Þ þ oxðiwoxw� iwoxwÞ ¼ 0;
which is the local charge conservation law. The above two local conservation laws (2.14) and (2.15) can
lead to the global properties of the system under appropriate assumptions (e.g., suitable boundary
conditions).

Throughout this context, we assume that the solution is smooth enough, the spatial interval we consider is
½xL; xR�. If wðx; tÞ and oxw(x,t) satisfy periodic boundary conditions w(xL,t) = w(xR,t) and oxwðxL; tÞ ¼
oxwðxR; tÞ, respectively (here requires that wðxL; tÞ and oxwðxL; tÞ are finite), for any t where is defined, then
we will have two global conservation laws corresponding to the above two local ones, respectively,
d

dt
IðzÞðtÞ ¼ 0 ð2:16Þ
and
d

dt
CðzÞðtÞ ¼ 0; ð2:17Þ
where IðzÞðtÞ ,
R xR

xL
Iðzðx; tÞÞdx is the total momentum and CðzÞðtÞ ,

R xR

xL
jwðx; tÞj2 dx is the charge, which is

also called mass or plasmon number (or wave power) in different scientific fields. For simplicity, we omit
the proofs of the global conservation laws here.

Now we take s = Dt and h = Dx, we integrate the local momentum conservation law (2.14) over the local
domain [0, s] · [0,h], namely
Z h

0

½Iðzðx; sÞÞ � Iðzðx; 0ÞÞ�dxþ
Z s

0

½Gðzðh; tÞÞ � Gðzð0; tÞÞ�dt ¼ 0: ð2:18Þ
Corresponding to the discretization (2.10), we use a discrete form
Mle , h
Xs

m¼1

bmðIðz1
mÞ � Iðz0

mÞÞ þ s
Xr

k¼1

~bkðGðzk
1Þ � Gðzk

0ÞÞ ð2:19Þ
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to approximate the left side of (2.18). Similarly, it follows from (2.15) that
Z h

0

½Cðzðx; sÞÞ � Cðzðx; 0ÞÞ�dxþ
Z s

0

½Jðzðh; tÞÞ � Jðzð0; tÞÞ�dt ¼ 0; ð2:20Þ
where CðzÞ ¼ ðMzÞTMz and JðzÞ ¼ 2zTMTKz are the charge density and the charge flow, respectively. Thus, we
define
Cle , h m
s

m¼1
bmðCðz1

mÞ � Cðz0
mÞÞ þ s

Xr

k¼1

~bkðJðzk
1Þ � Jðzk

0ÞÞ ð2:21Þ
as the discrete form of the left side of (2.20). In order to investigate the global conservation laws in the sub-
sequent numerical simulations, we give the approximations for them. The discrete momentum and the discrete
charge at the time tn are defined by
I dðnÞ ¼
h
2

XN�1

l¼0

Xs

m¼1

bmIð/n
l;mwn

l;mÞ; ð2:22Þ
and
CdðnÞ ¼ h
XN�1

l¼0

Xs

m¼1

bmjwn
l;mj

2 ð2:23Þ
respectively.
For a general Hamiltonian PDE of the abstract form (2.3), if the two skew symmetric matrices M and K are

independent of t and the multi-symplectic Hamiltonian S(z,t) does not depend on t explicitly, namely, if
a(t) = constant and h(t) = constant, we will obtain the local energy conservation law
oE
ot
þ oF

ox
¼ 0 ð2:24Þ
with energy density E ¼ SðzÞ � 1
2
zTKzx and energy flux F ¼ 1

2
zTKzt, and the global energy conservation law
d

dt
EðzÞðtÞ ¼ 0 ð2:25Þ
provided with the periodic boundary conditions listed above, where EðzÞðtÞ ,
R xR

xL
Eðzðx; tÞÞdx. As to the

NLSEvc in this context, however, the two quantities are not conserved. The discrete local energy variation
is defined by
Ele , h
Xs

m¼1

bmðEðz1
mÞ � Eðz0

mÞÞ þ s
Xr

k¼1

~bkðF ðzk
1Þ � F ðzk

0ÞÞ; ð2:26Þ
and the discrete total energy at tn is defined by
EdðnÞ ¼ h
XN�1

l¼0

Xs

m¼1

bm �
aðtnÞ

2
Rðwn

l;mox/
n
l;mÞ �

hðtnÞ
2

V ðjwn
l;mj

2Þ
� �

: ð2:27Þ
3. Total symplecticity and discrete charge conservation law

By using the complex-valued state variable z ¼ ðw;/ÞT 2 C2; oxw ¼ /, we can rewrite the multi-symplectic
formulation of NLSEvc in the following equivalent compact form
iotwþ aðtÞox/ ¼ �hðtÞV 0ðjwj2Þw;
oxw ¼ /:
Now we make use of the symplectic Nyström method in x-direction and the symplectic Runge–Kutta method
in t-direction, a multi-symplectic method reads
Wk
l;m ¼ wk

l þ cmDx/k
l þ Dx2

Xs

j¼1

amjoxxW
k
l;j; ð3:1aÞ
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/k
lþ1 ¼ /k

l þ Dx
Xs

m¼1

bmoxxW
k
l;m; ð3:1bÞ

wk
lþ1 ¼ wk

l þ Dx/k
l þ Dx2

Xs

m¼1

bmoxxW
k
l;m; ð3:1cÞ

Wk
l;m ¼ w0

l;m þ Dt
Xr

i¼1

~akiotW
i
l;m; ð3:1dÞ

w1
l;m ¼ w0

l;m þ Dt
Xr

k¼1

~bkotW
k
l;m; ð3:1eÞ

iotW
k
l;m ¼ �akoxxW

k
l;m � hkV 0ðjWk

l;mj
2ÞWk

l;m: ð3:1fÞ
The discrete conservation of multi-symplecticity as discussed in §2 is a local property of the Hamiltonian
PDEs. The global symplecticity in time and the charge are the important conservation quantities for NLSEvc
(2.1), and the charge conservation law plays an important role in self-focusing of laser in dielectrics, propa-
gation of signals in optical fibers, 1D Heisenberg magnets and so on.

An important question is if the multi-symplectic RKN methods preserve the discrete global symplecticity in

time and the discrete charge under the appropriate boundary conditions.

To answer this question, firstly we aim to obtain the discrete global symplecticity conservation. Use the
same technique as in [10,11] under the periodic boundary conditions we integrate the multi-symplectic conser-
vation law (2.4) over the spatial interval [�L, L], which yields the following identity
0 ¼
Z L

�L

o

ot
xþ o

ox
j

� �
dx ¼ d

dt

Z L

�L
xdx;
namely,
Z L

�L
xðx; tÞdx ¼

Z L

�L
xðx; 0Þdx; ð3:2Þ
which shows the global symplecticity is conserved in time in the continuous case. By summing the discrete
symplectic conservation law over all spatial grid points, we have
0 ¼ h
XN�1

l¼0

Xs

m¼1

bmðx1
l;m � x0

l;mÞ þ s
XN�1

l¼0

Xr

k¼1

~bkðjk
lþ1;0 � jk

l;0Þ ¼ h
XN�1

l¼0

Xs

m¼1

bmðx1
l;m � x0

l;mÞ;
where the last equality comes from the periodic boundary condition (or zero boundary condition) on the spa-
tial domain. This implies the following discrete total symplectic conservation law in time
h
XN�1

l¼0

Xs

m¼1

bmx1
l;m ¼ h

XN�1

l¼0

Xs

m¼1

bmx0
l;m: ð3:3Þ
Comparing (3.2) with (3.3), we find that (3.3) is the discrete approximation of (3.2) and we conclude that
under appropriate boundary conditions, the multi-symplectic RKN methods have the discrete global symplec-
tic conservation law in time, that is, the local symplectic property implies the global one.

Now we show that the discrete (local and global) charge conservation laws are preserved by means of the
multi-symplectic RKN methods for NLSEvc with appropriate boundary conditions.

Theorem 2. In the method (3.1a)–(3.1f), assume that
bm ¼ bmð1� cmÞ; bmðbj � amjÞ ¼ bjðbm � ajmÞ; for m; j ¼ 1; 2; . . . ; s;
and
~bk
~bi ¼ ~bk~aki þ ~bi~aik; for i; k ¼ 1; 2; . . . ; r;
then the discretization (3.1) has a discrete local charge conservation law
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h
Xs

m¼1

bmðjw1
l;mj

2 � jw0
l;mj

2Þ þ is
Xr

k¼1

~bka
k½ðwk

lþ1/
k
lþ1 � /k

lþ1w
k
lþ1Þ � ðw

k
l /

k
l � /k

l w
k
l Þ� ¼ 0: ð3:4Þ
Proof 1. (3.1a)–(3.1f) imply
jw1
l;mj

2 � jw0
l;mj

2 ¼ w1
l;mw1

l;m � w0
l;mw0

l;m

¼ s
Xr

k¼1

~bkðWk
l;motW

k
l;m þ otW

k
l;mWk

l;mÞ þ s2
Xr

i;k¼1

ð~bk
~bi � ~bk~aki � ~bi~aikÞotW

k
l;motW

i
l;m:
By making use of ~bk
~bi ¼ ~bk~aki þ ~bi~aik, we have
Xs

m¼1

bmðjw1
l;mj

2 � jw0
l;mj

2Þ ¼ s
Xr

k¼1

~bk

Xs

m¼1

bmðWk
l;motW

k
l;m þ otW

k
l;mWk

l;mÞ: � ð3:5Þ
On the other hand, it follows that
wk
lþ1/

k
lþ1 � wk

l /
k
l ¼ h/k

l /
k
l þ h

Xs

m¼1

bmWk
l;moxxW

k
l;m þ h2

Xs

m¼1

bmoxxW
k
l;m/k

l þ h2
Xs

m¼1

bmð1� cmÞ/k
loxxW

k
l;m

þ h3
Xs

m;j¼1

bmðbj � amjÞoxxW
k
l;joxxW

k
l;m:
By using bm ¼ bmð1� cmÞ, we have
wk
lþ1/

k
lþ1�wk

l/
k
l ¼ hj/k

l j
2þh

Xs

m¼1

bmWk
l;moxxW

k
l;mþ2h2

Xs

m¼1

bmRðoxxW
k
l;m/k

l Þþh3
Xs

m;j¼1

bmðbj�amjÞoxxW
k
l;joxxW

k
l;m;

ð3:6Þ

where RðuÞ denotes the real part of the complex u.

Secondly, we can get
wk
lþ1/

k
lþ1 � wk

l /
k
l ¼ wk

lþ1/
k
lþ1 � wk

l /
k
l ¼ hj/k

l j
2 þ h

Xs

m¼1

bmWk
l;moxxW

k
l;m þ 2h2

Xs

m¼1

bmRðoxxW
k
l;m/k

l Þ

þ h3
Xs

m;j¼1

bjðbm � ajmÞoxxW
k
l;joxxW

k
l;m: ð3:7Þ
Subtracting (3.7) from (3.6) and using the condition bj(bm � ajm) = bm(bj � amj), we obtain
ðwk
lþ1/

k
lþ1 � wk

l /
k
l Þ � ð/

k
lþ1w

k
lþ1 � /k

l w
k
l Þ ¼ h

Xs

m¼1

bmðWk
l;moxxW

k
l;m � oxxW

k
l;mWk

l;mÞ: ð3:8Þ
It follows from (3.1f) that
Wk
l;motW

k
l;m þ otW

k
l;mWk

l;m ¼ iakðWk
l;moxxW

k
l;m � oxxW

k
l;mWk

l;mÞ: ð3:9Þ
Combining (3.5), (3.8) and (3.9), we complete the proof.
From the above theorem, we obtain the preservation of the global charge conservation law of multi-sym-

plectic RKN methods as follows.

Theorem 3. Under the assumptions of Theorem 2, if the periodic boundary condition or zero boundary conditions

hold for (2.1), i.e. wn
N ¼ wn;k

0 ; oxw
n;k
N ¼ oxw

n;k
0 , or wn;k

N ¼ wn;k
0 ¼ 0, then the method (3.1) satisfies the discrete

charge conservation law, that is,
h
XN�1

l¼0

Xs

m¼1

bmjwn
l;mj

2 ¼ constant;
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where wn
l;m � wððlþ cmÞh; nsÞ;wn;k

l;m � wððlþ cmÞh; ðnþ ~dkÞsÞ and so on. When n = 0 we always omit the subscript

n for simplicity, and n is a nonnegative integer here.

Proof 2. Due to Theorem 2, taking the sum of the equation (3.4) over the spatial grid points, it follows
that
h
XN�1

l¼0

Xs

m¼1

bmðjw1
l;mj

2 � jw0
l;mj

2Þ ¼ �is
Xr

k¼1

~bka
k½ðwk

N/k
N � wk

0/
k
0Þ � ð/

k
Nwk

N � /k
0w

k
0Þ�:
If the boundary conditions satisfy wk
N ¼ wk

0;/
k
N ¼ /k

0, or wk
N ¼ wk

0 ¼ 0, then
h
XN�1

l¼0

Xs

m¼1

bmðjw1
l;mj

2 � jw0
l;mj

2Þ ¼ 0;
this completes the proof. h

Theorems 2 and 3 are non-trivial extensions of results on the quadratic invariants of symplectic RKN meth-
ods for Hamiltonian ODEs to the multi-symplectic RKN methods for NLSEvc. In numerical experiments in
the next section, in fact, the charge conservation law of NLSEvc will be preserved precisely, in the round-off
errors of computer, by means of the multi-symplectic RKN methods.
4. Numerical experiments

The numerical experiments of 2-order multi-symplectic RKN schemes (the Goldberg scheme and its gen-
eralization) can be found in [9]. In this section, we present a 4-order multi-symplectic RKN method and give
some numerical comparisons with a 4-order non multi-symplectic RKN methods to illustrate the theoretical
results in the previous sections.

We consider the following problem
iwt þ aðtÞwxx þ hðtÞjwj2w ¼ 0;

wðx; 0Þ ¼ uðxÞ;
ð4:1Þ
where
aðtÞ ¼ 1

2
cosðtÞ þ

ffiffiffi
2
p

cos
ffiffiffi
2
p

t
� �� �

; hðtÞ ¼
cosðtÞ þ

ffiffiffi
2
p

cos
ffiffiffi
2
p

t
� �

sinðtÞ þ sin
ffiffiffi
2
p

t
� �

þ 5
;

uðxÞ ¼ 1ffiffiffi
5
p sech

x
5

� �
exp

iðx2 � 1Þ
10

� �
:

The equation is of interesting and important class (see [21] and references therein). Based on the results in
[7,9,21], the problem has a quasi-periodically solitary wave solution
wqpðx; tÞ ¼ P 1qpðx; tÞP 2qpðx; tÞP 3qpðx; tÞ; ð4:2Þ
where
P 1qpðx; tÞ ¼
1

ðsinðtÞ þ sin
ffiffiffi
2
p

t
� �

þ 5Þ
1
2

;

P 2qpðx; tÞ ¼ sech
x

sinðtÞ þ sin
ffiffiffi
2
p

t
� �

þ 5

 !
;

P 3qpðx; tÞ ¼ exp
iðx2 � 1Þ

2 sinðtÞ þ sin
ffiffiffi
2
p

t
� �

þ 5
� �

 !
:
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Since local and global momentum and charge are preserved, we define the errors of MCL and CCL by
ðM errÞnl ¼ ðMleÞnl=ðhsÞ ¼
Xs

m¼1

bm

ðIðznþ1
l;m Þ � Iðzn

l;mÞÞ
s

þ
Xr

k¼1

~bk
ðGðzn;k

lþ1Þ � Gðzn;k
l ÞÞ

h
ð4:3Þ
and
ðCerrÞnl ¼ ðCleÞnl=ðhsÞ ¼
Xs

m¼1

bm

ðCðznþ1
l;m Þ � Cðzn

l;mÞÞ
s

þ
Xr

k¼1

~bk
ðJðzn;k

lþ1Þ � Jðzn;k
l ÞÞ

h
ð4:4Þ
respectively. ðM errÞnl and ðCerrÞnl reflect the local numerical properties with solving the NLSE by using
RKN discretizations (2.10), the indices l and n do not mean that the local errors are taken at the mesh
point (xl,tn), for the reason that these errors are derived from the local integrations Mle and Cle in the
rectangle
ððxl; tnÞ; ðxlþ1; tnÞ; ðxlþ1; tnþ1Þ; ðxl; tnþ1ÞÞ:

From the approximations (4.3) and (4.4), we know that there exists an appropriate point, which is denoted by
ðx�l ; t�nÞ in the rectangle and the errors are taken at this point.

As for the two global conserved quantities, the charge and total momentum, the global errors of them are
defined as
CerrðnÞ ¼ CdðnÞ � Cdð0Þ ð4:5Þ

and
MerrðnÞ ¼MdðnÞ �Mdð0Þ ð4:6Þ

respectively.

It is known that for the NLSEvc considered, the local and total energy are not conserved. To observe the
evolution of the energy, notice that the exact local energy variation is given by
Eex , otEðzÞ þ oxF ðzÞ ¼ ot �
hðtÞ

4
jwj4 � aðtÞ

2
RðwwxxÞ

� �
þ ox

aðtÞ
2

Rðwwxt � wxwtÞ
� �

¼ � h0ðtÞ
4
jwj4 � bðtÞjwj2RðwwtÞ �

a0ðtÞ
2

RðwwxxÞ �
aðtÞ

2
Rðwtwxx þ wwxxtÞ

þ aðtÞ
2

Rðwwxxt � wxxwtÞ ð4:7Þ
and we make use of the notation ðEexÞnl ¼ Eexðwðx�l ; t�nÞÞ, and define the error of the local energy variation by
ðEerrÞnl ¼ ðEexÞnl � ðEleÞnl=ðhsÞ; ð4:8Þ

where
ðEleÞnl=ðhsÞ ¼
Xs

m¼1

bm

ðEðznþ1
l;m Þ � Eðzn

l;mÞÞ
s

þ
Xr

k¼1

~bk
ðF ðzn;k

lþ1Þ � F ðzn;k
l ÞÞ

h
:

If the total energy is conserved in the continuous case, then under numerical discretizations, the global error
of this quantity at some time step is defined by the difference between the current discrete total energy and the
initial one [11,19]. It means that the initial discrete total energy derived from the corresponding discretization is
regarded as the reference quantity to investigate the evolution of the energy. In this context, however, the total
energy is not conserved in the continuous case. Hence in the numerical experiments, the initial discrete total
energy cannot be seen as the reference quantity here at all. Now we define another discrete total energy at tn by
EexðnÞ¼h
XN�1

l¼0

Xs

m¼1

bm �
aðtnÞ

2
R wðxlþcmh;t0þnsÞoxxwðxlþcmh;t0þnsÞ
� �

�hðtnÞ
2

V ðjwðxlþcmh;t0þnsÞj2Þ
� �

;

ð4:9Þ
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which is obtained by replacing the numerical nodal data in (2.27) by the corresponding exact ones. The dis-
crete energy in (4.9) is another approximation to the exact total energy EðzÞðtÞ at tn and the approximation
error depends only on the truncation error of the discretization of the spatial integration. With the upper
bound of the truncation error given in [12], the approximation error of the discrete total energy in (4.9)
can be controlled by means of choosing small enough spatial stepsize h. To make a difference from the discrete
total energy in (2.27), the discrete total energy defined here is referred to the ‘‘exact’’ total energy. Naturally,
we define the global error of the discrete total energy by
EerrðnÞ ¼ EexðnÞ � EdðnÞ: ð4:10Þ
The above errors listed are all the preserving errors of local and global conservation laws, the error of solu-
tions, an important numerical characteristic, should be investigated. Here, we use the infinite norm of differ-
ences between the numerical and exact solutions, namely the following maximum error
ðgerrÞ
n
l ¼ maxðjRðwðxl; tnÞ � wn

l Þj; jIðwðxl; tnÞ � wn
l ÞjÞ: ð4:11Þ
In the subsequent numerical exhibitions, we use the following notations of maximum errors
ðM errÞn ¼ max
l
jðM errÞnl j; ð4:12Þ

ðCerrÞn ¼ max
l
jðCerrÞnl j; ð4:13Þ

ðEerrÞn ¼ max
l
jðEerrÞnl j; ð4:14Þ

ðgerrÞ
n ¼ max

l
jðgerrÞ

n
l j: ð4:15Þ
Since the exact solution w(x,t) given in (4) is also exponentially small away from x = 0 for any fixing t, the
periodic boundary condition
wjx¼xL
¼ wjx¼xR

; ð4:16Þ
are added to the problem (4.1), we take xL = �60 and xR = 60, the temporal interval [0,200]. The spatial step-
size and the temporal one are take as h = 0.6 and s = 0.1, respectively in the following numerical experiments.

We construct the symplectic and non-symplectic 3-stage 4-order Nyström schemes, which can be formu-
lated as the following Butcher’s tabulars

and

respectively. We denote the multi-symplectic RKN method, i.e., the 2-stage 4-order Gauss–Legendre colloca-
tion method



Fig. 1. The numerical quasi-periodically solitary solutions obtained by using MS-MN3, the real part q(x, t) (left) and the imaginary part
p(x, t) (right).
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applied to the temporal and the above 3-stage 4-order symplectic Nyström scheme to the spatial direction, by
MS-MN3 in short. And, the non-multisymplectic one is denoted by nMS-MN3, which is concatenation of the
2-stage 4-order Gauss–Legendre collocation method in the temporal direction and the above 3-stage 4-order
non-symplectic Neström scheme in the spatial direction. All numerical comparisons between MS-MN3 and
nMS-MN3 are processed under the same numerical conditions. Because two methods are implicit, the fixed
point iteration method is utilized to solve the nonlinear algebraic systems generated by the numerical scheme,
each iteration will terminate when the maximum absolute error of the adjacent two iterative values is less than
10�14. The time cost of the scheme MS-MN3 is about 3/4 of that of the non-multisymplectic one, nMS-MN3.
Figs. 1–8 are given by means of the two methods, MS-MN3 and nMS-MN3.

Fig. 1 shows the numerical solutions of the quasi-periodically solitary wave obtained by MS-MN3. It
reflects some theoretical properties of the exact quasi-periodically solitary wave solution, e.g. the asymptotic
behavior in the space and the quasi-periodicity in the time. The results of numerical simulation with nMS-
MN3 are as good as ones with MS-MN3, we do not plot the two graphs obtained by the former any more
accordingly.

The numerical results related to the local energy variation are listed in Fig. 2. The error obtained by
Ms-MN3 is in the scale of Oð10�2Þ and that by nMS-MN3 is only Oð10�1Þ. From the top two diagrams
and bottom one, with the errors exhibited at the middle, one concludes that the multi-symplectic scheme
MS-MN3, on simulating the local energy variation, is a little better than the non-multi-symplectic one,
nMS-MN3.

Fig. 3 displays the numerical results of the total energy. The discrete total energy obtained by MS-MN3, the
corresponding one obtained by nMS-MN3 and the exact total energy are almost the same in the present scale.
As appearing in Fig. 2, the error obtained by MS-MN3 is a little better than that by nMS-MN3, the former is
of order Oð10�3Þ and the other is only of Oð10�1Þ. The two error curves evolves very similarly, they have some
reasonable oscillations and do not produce any error accumulation over the time interval. The stability of the
two high-order schemes with respect to the total energy is verified numerically.

Fig. 4 shows the maximum errors of the discrete momentum conservation law in the time interval
[0,200]. From the two graphs, the preserving order, the oscillation, the evolution of errors obtained by
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MS-MN3 and nMS-MN3 are almost the same. It is further shown in Fig. 5 that the global errors in pre-
serving the total momentum by the two schemes are very similarly. The error curves in the two figures
show numerically that the two schemes are stable in the sense of the local and global momentum conser-
vation laws (see [4]).

The maximum errors of the local charge conservation law by the two high-order schemes are exhibited in
Fig. 6. The left graph shows that the local charge conservation law is preserved in the scale of Oð10�15Þ, almost
roundoff errors of the computer by means of MS-MN3, however, the error obtained by nMS-MN3 is only of
Oð10�2Þ. Similar numerical phenomena are exhibited in Fig. 7 on the global errors in preserving the discrete
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charge. Comparing the four graphs in Figs. 6 and 7, we find that the remarkable advantages of multi-symplec-
tic RKN methods are the precise preservations of the charge conservation laws.

Fig. 4 shows the maximum errors of the numerical solutions by MS-MN3 and nMS-MN3 in the time
interval [0,200], and reveals that the errors are almost the same. The peak value of the errors by MS-MN3
is about 0.1 and that by nMS-MN3 is about 0.16. The two error curves present almost the same reason-
able oscillations.
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5. Conclusions

The concatenation of symplectic Runge…Kutta methods in temporal direction and symplectic Nystro¨m
methods in spatial direction for NLSEvc leads to the multi-symplectic integrators. It is shown theoretically
that the discrete total symplecticity in temporal direction is preserved precisely by the multi-symplect
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RKN methods for NLSEvc. Numerical results reveal the stability of multi-symplectic RKN methods in the
sense of classical conservation laws and the good preservation of phase space structure. Theoretical and
numerical results show that the remarkable advantage of multi-symplectic RKN methods is the precise pres-
ervation of discrete (local and global) charge conservation law for NLSEvc. An interesting observation is that
the numerical accuracy of total energy under the multi-symplectic RKN discretization may reach in a higher
order in contrast to the accuracy of numerical schemes. A 4-order multi-symplectic RKN scheme is presented
and implemented in numerical experiments. Some interesting numerical results reveal the superiorities of
multi-symplectic RKN methods not only in the conservation of multi-symplectic geometric structure, but also
in the preservation of some crucial conservative properties in physics.
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