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Abstract

In this paper, we consider Runge-Kutta—Nystrom (RKN) methods applied to nonlinear Schrodinger equations with
variable coefficients (NLSEvc). Concatenating symplectic Nystrom methods in spatial direction and symplectic Runge—
Kutta methods in temporal direction for NLSEvc leads to multi-symplectic integrators, i.e. to numerical methods which
preserve the multi-symplectic conservation law (MSCL), we present the corresponding discrete version of MSCL. It is
shown that the multi-symplectic RKN methods preserve not only the global symplectic structure in time, but also local
and global discrete charge conservation laws under periodic boundary conditions. We present a (4-order) multi-symplectic
RKN method and use it in numerical simulation of quasi-periodically solitary waves for NLSEvc, and we compare the
multi-symplectic RKN method with a non-multi-symplectic RKN method on the errors of numerical solutions, the numer-
ical errors of discrete energy, discrete momentum and discrete charge. The precise conservation of discrete charge under the
multi-symplectic RKN discretizations is attested numerically. Some numerical superiorities of the multi-symplectic RKN
methods are revealed.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The nonlinear Schrédinger equation in its many versions is one of the most important models of mathemat-
ical physics, with applications to different fields such as plasma physics, nonlinear optics, water waves,
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bimolecular dynamics and many other fields. And many numerical methods have been developed to solve it
(see [5-7,9,13,14,19,21] and references therein). In the last two decades, symplectic methods have predomi-
nated over non-symplectic schemes for long-time numerical computations and nowadays applied to many
fields of science which include celestial mechanics, quantum physics, statistics and so on [1,6,12,15,20]. The
multi-symplectic integrators which preserve the discrete form of the multi-symplectic conservation law have
been suggested in [3,19]. Some results on multi-symplectic methods have been presented in [1,3,7-
11,13,14,16-19] and references therein. For Hamiltonian partial differential equations (PDEs) with constant
coefficients, Reich in [19] considered Hamiltonian wave equations, and showed that the Gauss—Legendre dis-
cretization applied to the scalar wave equation (also to the nonlinear Schrédinger equation) both in temporal
and spatial directions, leads to a multi-symplectic integrator (also see [10,13]), and some sufficient conditions
for multi-symplecticity of partitioned Runge—Kutta (PRK) methods applied to Hamiltonian PDEs have been
presented by Hong et al. [10], it has been shown that concatenating symplectic PRK methods in temporal and
spatial directions leads to the multi-symplectic integrators, and some conservative properties on charge, energy
and momentum for multi-symplectic Gauss—Legendre methods, multi-symplectic Runge-Kutta methods and
multi-symplectic partitioned Runge—Kutta methods have been discussed in [10,11,13,14,17,19] and some ref-
erences therein. Authors of [7-9] developed multi-symplectic methods, mainly centred box scheme, for some
Hamiltonian PDEs with variable coefficients, including linear (nonlinear) Schrédinger equations and KdV
equations, and related numerical analysis.

Now we pay attention to the special symplectic methods for special kinds of Hamiltonian ordinary differ-
ential equations. Nystrom methods for the second order differential equation y = g(y),

{ li =gy + cihyo + hzz;:laijlj)a
i =Yo+hn+ hszﬂﬁ;lh)"l = Yo + hy i \bils,

are very useful and important in applications to some practical situations. In [22,23] (also see [6,20]), Suris
obtained the symplectic conditions of Nystrom methods as follows:

ﬁi:b,‘(lfci) fori:l,...,s,
bi(ﬂj—aij):bj(ﬁi_aﬁ) for i’j:17"'as7

which are very interesting, and guarantees the conservation of quadratic invariants ([6,15,20]).

In this paper, we consider nonlinear Schrédinger equations with variable coefficients (NLSEvc), which are
proposed in [21] and have multi-symplectic conservation law and some physical conservative quantities ([7,9]).
Because the derivative in NLSEvc in spatial direction is of second order, we apply symplectic Nystrém meth-
ods in spatial direction and symplectic Runge-Kutta methods in temporal direction. Naturally, one wonders
whether such concatenation methods lead to the multi-symplectic integrators, and whether they preserve clas-
sical conservation laws, such as the global symplecticity in time and the charge conservation laws and so on. In
this paper, we show that such numerical methods preserve the multi-symplectic conservation law (so called
multi-symplectic Runge-Kutta—Nystrom (RKN) methods), and some important properties, such as the global
symplecticity in time and the charge conservation law are also preserved. The charge conservation law can be
seen as a quadratic invariant which is, in generical, not preserved by the symplectic integrators, even in the
case of Hamiltonian ODE:s ([6,15,20]). For the purpose of application, we proposed a (4-order) multi-symplec-
tic RKN method and make use of it in the numerical simulation of quasi-periodically solitary waves of
NLSEvec. In the numerical comparison with a (4-order) non multi-symplectic RKN method, we find out some
superiorities of multi-symplectic RKN methods in numerical computation for NLSEvc.

This paper is organized as follows: In Section 2, we present the condition of multi-symplecticity of RKN
methods. In order to study the classical conservative properties of multi-symplectic RKN methods, we discuss
some local and global conservation laws, e.g., energy, momentum and charge, for NLSEvc. In Section 3, we
show that the multi-symplectic RKN methods have the global symplectic conservation in time, and prove that
they have the local discrete charge conservative property, thus have the global one which is very important in the
application to some physical problems. In Section 4, in order to illustrate our theoretical results, we present a 4-
order multi-symplectic RKN method and give some numerical experiments, especially, some numerical compar-
isons with a (4-order) non multi-symplectic RKN method. The conclusion of this paper is presented in Section 5.
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2. Conservation laws
2.1. Multi-symplectic conservation law

We consider the following nonlinear Schrédinger equation with variable coefficients (NLSEvc)
0 + ()Y + 0OV (W =0,  (v,0) €U CR?, (2.1)

where V, o and 6 are smooth functions from R to R (for more details of (2.1), see [7,9,21]). Let = ¢ +1 p.
Then (2.1) can be written in the form

dq = —a(t)dup — 0(1)V'(¢* + P*)p, (2.2a)
ap = a(1)dug + 0()V'(¢* + p)g. (2.2b)
We introduce a pair of conjugate momenta v = ¢,, w = p, and obtain a Hamiltonian PDE
M0,z + K0,z = V.S(z,1), (2.3)
where z = (¢, p, v, w)T, M and K are skew-symmetric matrices,
0 -1 0 0 0 0 1 0
M- 1 0 00 K=o 0 0 01 7
00 00 -1 0 00
00 00 0 -1 00

and the smooth function S(z, ) = —10(¢)V (¢* + p*) — L a(r)(v* + w?). Eq. (2.3) has a multi-symplectic conser-

vation law (see [2,3,7,9,13-15])

0w Ok
N + P 0, (2.4)
where @ and x are pre-symplectic forms,
1 1
a):zdzAMdz and Kzidz/\Kdz. (2.5)
The corresponding equations for the differential one forms da = (dg, dp, dv, dw)T are given by

0,dg + a(t)d,dw = —0(1)[V'(¢* + p*)dp + (2pq dq + 2p° dp) V" (¢* + P)], (2.6a)
—0,dp + a(t)o,dv = —0()[V'(¢* + p*) dg + (2pgdp + 2¢°dq)V" (¢ + p*)], (2.6b)
0,dg = dv, (2.6¢)
Oydp = dw, (2.6d)

where we use the fact that the exterior derivative operator d can commute with the partial derivative operators
0, or 0,. From (2.6a), (2.6b) it follows that

0,dg A dp + a(£)d.dw A dp = —20(t)gpV" (¢* + p*)dgq A dp, (2.7a)

—0,dp A dg + (1), dv A dg = —20(t)gpV" (¢* + p*)dp A dg. (2.7b)
This leads the multi-symplectic conservation law(MSCL)

0:,(dp A dq) + a(2)0,(dg A dv+ dp A dw) = 0. (2.8)
Now we rewrite (2.3) as the following form

— a()ow = —3,p + 0(1)V'(¢* + p)g,

— a(t)o,w =g + 0OV (¢ + p*)p,

0. = v, (2.9¢

op=w. (2.9d
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Now let us consider the multi-symplecticity of concatenating Nystrom methods in spatial direction and
Runge-Kutta methods in temporal direction for NLSEvc (2.1). In order to process the numerical discretizai-
ton, we introduce a uniform grid [12] (x;,#) € R* with mesh-length A¢ in the ¢-direction and mesh-length Ax in
the x-direction, and denote the value of the function ¥(x,?) at the mesh point (x;,#) by W; . For (2.9a2)—(2.9d),
in x-direction applying an s-stage Nystrom method, with coefficients {a,,;},{b.},{p,} and {c,}, and in
t-direction applying an r-stage Runge-Kutta method with coefficients {a,}, {Bk} and d; = Zj.:lak,, it is con-
cluded that

QI;,m = qll( + CmAXU]; + sz Z amjaxeI[:ju (2103)
J=1
Pl]{,m = p]; + CmAXI/V/; + sz Z amjaxxpl;ja (210]3)
j=1

U/;+1 = UllC + Ax Z bmaxe];,ma (2.10c)
m=1

W/IC-H = W/; + Ax Z bmaxxplzimv (210d)
m=1

=g+ A+ AR S 000 (2.10¢)

941 q; U + mYxx m» 10e

m=1
koo ok Ax k A)C2 - 0 Pk 2.10f
P =pp +Axw; + Z:Bm el (2.10f)
m=1

Ol = + A D_@:0,0,,, (2.10g)
i=1

Py =p), + MY @dP, (2.10h)
i=1

Qi = )+ ALY RO, (2.10i)
k=1

Plw =Pl + ALY bOP,, (2.10))
k=1

anl;,m = 7akaxxpll€,m - Hk V,(lef‘m)z + (P][{‘m)zpllimﬂ (2101()

afP]l(,m = akaXXQ/;,m + ek V/(Ql;,)n)z + (Pll(,m)ZQ/[im‘ (2101)

The notations above are in the following sense, Q’l‘m ~ q((1 4 cn)Ax, di A1), ¢F = q(IAx, diAt),
0,01, ~ 8 ((1 + en)Ax, diAt), 00}, & Duq((1 + cu)Ax, diAr), P, =~ p((1 + cu)Ax,diM), pf ~ p (IAx,d,At),
0P, ~ Op((1+ cn)Ax,diAl), 0P}, ~ 0up((I+ cu)Ax,diAt),  of mo(IAx,diAL),  of = a(diAt),0F =
0(diA?), Py, =~ p((I + cn)AX,0), ¢, = (I + cn)Ax,0), pl,, = p((I + c)Ax, A1), g}, = q((I + cu)Ax, Ar), and
SO On.

The following result is the characterization of multi-symplectic RKN methods for NLSEvc, it has a similar
proof (therefore omitted) to the results in [10,14,19].

Theorem 1. In the method (2.10a)—(2.101), if’

By = bu(l —cn), bu(B; — amw;) = bj(B, — am), form,j=172,...s, (2.11)
and

bib: = buag + biay, — forik=1,2,....r, (2.12)

then the method (2.10a)—~(2.101) is multi-symplectic with the discrete multi-symplectic conservation law
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S

Ax b, (dgy,, Adpj,, — dq),, Adp),)
m=1

. (2.13)
— Aty ol (dgh,, Advy,, — dgy A dv; + dpl,, Adwl,, — dpi Adw)) = 0.

k=1

2.2. Some important classical conservation laws and their discretizations

As a preparation of the further discussion, we present some classical conservation laws. For the Hamilto-
nian PDE (2.3), it has a local momentum conservation law (MCL)
ol n oG
o x
with momentum density / = 1z"Mz, and momentum flux G = S(z) — 1z"Mz,. Evidently, we can rewrite /(z)
and G(z) as the following compact forms

0 (2.14)

1, — 1 — ot 0(t
1) = 1300 and 6) =3 3@) - e - " v,
where 3 denotes the imaginary part of complex number.
Now we take a product with (2.3) by (Mz)" and notice that (Mz)'V.S(z) vanishes, it follows that

(Mz) "Mz, + (Mz)"Kz, = 0. Since zIM"Kz = 0, the above equation can be written as
0,((Mz) " Mz) + 0,(2="M"Kz) = 0. (2.15)
It is equivalent to a compact form

d(WI) + 8.y — ipdp) =0,

which is the local charge conservation law. The above two local conservation laws (2.14) and (2.15) can
lead to the global properties of the system under appropriate assumptions (e.g., suitable boundary
conditions).

Throughout this context, we assume that the solution is smooth enough, the spatial interval we consider is
[xr,xz]. If ¥(x,¢) and O.(x,r) satisfy periodic boundary conditions W(xz,f) = y(xg,t) and O (x;,t) =
0,¥(xg, t), respectively (here requires that (x;,¢) and 0,y/(x;,¢) are finite), for any ¢ where is defined, then
we will have two global conservation laws corresponding to the above two local ones, respectively,

d

TIE)(0) =0 (2.16)
and

d

where Z(z)(t) £ f;f I(z(x,1))dx is the total momentum and C(z)(z) & fxxf W (x,7)[ dx is the charge, which is
also called mass or plasmon number (or wave power) in different scientific fields. For simplicity, we omit
the proofs of the global conservation laws here.

Now we take t = Ar and & = Ax, we integrate the local momentum conservation law (2.14) over the local
domain [0, 7] X [0,/], namely

/0 [I(z(x,7)) — I(z(x,0))]dx + /OT[G(z(h, 1)) — G(z(0,¢))]dt = 0. (2.18)

Corresponding to the discretization (2.10), we use a discrete form

M, 2h Z bu(I(zh) = 1(2%)) + < Z bi(G(Z}) — G(2)) (2.19)
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to approximate the left side of (2.18). Similarly, it follows from (2.15) that

/0 [Cz(x, 7)) — C(z(x,0))] dx + /0 U, 1) — J(2(0, )] de = 0, (2.20)

where C(z) = (Mz)" Mz and J (z) = 22"M" Kz are the charge density and the charge flow, respectively. Thus, we
define

Cle 2l i bal(CEL) — CE)) + 3 Bl () — I () 21)

m=1

as the discrete form of the left side of (2.20). In order to investigate the global conservation laws in the sub-
sequent numerical simulations, we give the approximations for them. The discrete momentum and the discrete
charge at the time ¢, are defined by

=5 Z Zb 3(P) W0, (2.22)

=0 m=
and
N-1 &
SO IR 223)
=0 m=1
respectively.

For a general Hamiltonian PDE of the abstract form (2.3), if the two skew symmetric matrices M and K are
independent of 7 and the multi-symplectic Hamiltonian S(z,7) does not depend on ¢ explicitly, namely, if
o(t) = constant and 0(¢) = constant, we will obtain the local energy conservation law

OE OF

Rl 2.24

o o (2.24)
with energy density £ = S(z) —% TKz, and energy flux F = %ZTKZ[, and the global energy conservation law

d

d—5(z)(t) =0 (2.25)
provided with the periodic boundary conditions listed above, where £(z foE z(x,t))dx. As to the

NLSEvc in this context, however, the two quantities are not conserved. The dlscrete local energy variation
is defined by

E.=h Z bu(E(Z) —E()) + 1 Z bi(F F(z5)), (2.26)
m=1

and the discrete total energy at ¢, is defined by

=03 S (- w0 - U v, ) 2.27)

li

3. Total symplecticity and discrete charge conservation law

By using the complex-valued state variable z = (, ¢)" € C%, 0.y = ¢, we can rewrite the multi-symplectic
formulation of NLSEvc in the following equivalent compact form

0 + ()0 = —0()V (W),
ax‘p = ¢

Now we make use of the symplectic Nystrom method in x-direction and the symplectic Runge-Kutta method
in ¢-direction, a multi-symplectic method reads

P =)+ cAxd) +Ax22amja v (3.1a)
=1
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¢ = ) + szb 0uh,, (3.1b)
Vi =V + Axgy + AX Z BV (3.1¢)
m=1
Wi, =0, + Atzakz@ L. (3.1d)
i=1
Vi =0, + AtZBka, wE (3.1e)
i0,},, = —od, sp?m — 0V (|9, ) P (3.1f)

The discrete conservation of multi-symplecticity as discussed in §2 is a local property of the Hamiltonian
PDEs. The global symplecticity in time and the charge are the important conservation quantities for NLSEvc
(2.1), and the charge conservation law plays an important role in self-focusing of laser in dielectrics, propa-
gation of signals in optical fibers, 1D Heisenberg magnets and so on.

An important question is if the multi-symplectic RKN methods preserve the discrete global symplecticity in
time and the discrete charge under the appropriate boundary conditions.

To answer this question, firstly we aim to obtain the discrete global symplecticity conservation. Use the
same technique as in [10,11] under the periodic boundary conditions we integrate the multi-symplectic conser-
vation law (2.4) over the spatial interval [—L, L], which yields the following identity

oo [ (Lo L) ar=t [ o

namely,

/_i o(x,t)dx = /_iw(x, 0) dx, (3.2)

which shows the global symplecticity is conserved in time in the continuous case. By summing the discrete
symplectic conservation law over all spatial grid points, we have

N-1 & N-1 r N— s
0= hz Zb C‘)lm ?,m)"‘fz ng(’clﬂm_’c]z(,o):hz Zb wlm_wlm)
1=0 m= 1=0 k=1 1=0 m=1

where the last equality comes from the periodic boundary condition (or zero boundary condition) on the spa-
tial domain. This implies the following discrete total symplectic conservation law in time

N—-1 s N—-1 s

hY Y by, =h bue - (3.3)

1=0 m=1 1=0 m=1

Comparing (3.2) with (3.3), we find that (3.3) is the discrete approximation of (3.2) and we conclude that
under appropriate boundary conditions, the multi-symplectic RKN methods have the discrete global symplec-
tic conservation law in time, that is, the local symplectic property implies the global one.

Now we show that the discrete (local and global) charge conservation laws are preserved by means of the
multi-symplectic RKN methods for NLSEvc with appropriate boundary conditions.

Theorem 2. In the method (3.1a)—(3.1f), assume that

B = bu(1 = cn), bu(B; — aw;) = b;(B — ajm), for m,j=12,....s,
and

bib; = by + biay, forik=1,2,...,r

then the discretization (3.1) has a discrete local charge conservation law
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S b2 = W12 + it S bt (05, 0, — dhvh,) — ek — dfub =o. (3.4)
k=1

m=1
Proof 1. (3.1a)—(3.1f) imply
|w},m|2 - |lp([],m|2 = w},mw}jm - w?mlﬁ(l),m

=T ZBJ((% —|— at‘Pk lPk ) (I;kl;i — l;kflkl b a,k)a 'I/ 6, 1

Im m*
ik=1

By making use of bib; = byay + biay, we have

me(w/llm |lplm —‘EZkab lm_|—a q/]l(mqﬂl(m) U (35)
m=1

On the other hand, it follows that
Vil - w,¢,—h¢1¢1+h2b V,0u P, + 1 BT, ¢,+h22b Bjous,
m=1
+ 1 Z bu(B; — )0 VX0

By using g, = b,,(1 — ¢,), we have

VL — et =hlt +th [ ) +2h22ﬁmm(aquf +h3Zb — )0 PR O

m=1 m=1
(3.6)
where R(u) denotes the real part of the complex u.
Secondly, we can get
Vit = Widh = Vi o — vidt = heif +h2b V00, + MZ/% R@u P}, 90)
+ i Z bi(By — )0 VX 0L (3.7)
Subtracting (3.7) from (3.6) and using the condition b{f,, — @) = b,.(p; — a,,;), we obtain
(wll(+l¢ll(+l - lpll((z)ll() - (¢l/{+lw]l(+l - ¢l/(lpll() = th qj];ma lItlll(m a lI’];m'I’k ) (38)
m=1
It follows from (3.1f) that
(23R SR N2 S VA C 2 L I ) (3.9)

Combining (3.5), (3.8) and (3.9), we complete the proof.
From the above theorem, we obtain the preservation of the global charge conservation law of multi-sym-
plectic RKN methods as follows.

Theorem 3. Under the assumptions of Theorem 2, if the periodic boundary condition or zero boundary conditions
hold for (2.1), i.e. Yy = lpgv",axw" x// , or wN = gk =0, then the method (3.1) satisfies the discrete
charge conservation law, that is,

hz zs:bm|l//,m| = constant,

1=0 m=
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where ), = Y((I + cw)h, n1), 7,’; ~ (14 cn)h, (n + di)7) and so on. When n = 0 we always omit the subscript
n for simplicity, and n is a nonnegative integer here.

Proof 2. Due to Theorem 2, taking the sum of the equation (3.4) over the spatial grid points, it follows
that

N—-1 s r _ _ _ _
R S bu(, ) = 10,17 = —ir;zékak[w’m’; — Yodh) — (DU — eue)].

1=0 m=1
If the boundary conditions satisfy Wf\, = 1,015, quV = qﬁg, or wf\, = lp’g =0, then

s

N-1
hz me(|l//},m|2 - |lp(/),m|2) = 07

1=0 m=1
this completes the proof. [

Theorems 2 and 3 are non-trivial extensions of results on the quadratic invariants of symplectic RKN meth-
ods for Hamiltonian ODEs to the multi-symplectic RKN methods for NLSEvc. In numerical experiments in
the next section, in fact, the charge conservation law of NLSEvc will be preserved precisely, in the round-off
errors of computer, by means of the multi-symplectic RKN methods.

4. Numerical experiments

The numerical experiments of 2-order multi-symplectic RKN schemes (the Goldberg scheme and its gen-
eralization) can be found in [9]. In this section, we present a 4-order multi-symplectic RKN method and give
some numerical comparisons with a 4-order non multi-symplectic RKN methods to illustrate the theoretical
results in the previous sections.

We consider the following problem

W, + a0, + O = 0, (4.1)
lﬁ(X, 0) = QD(X),

where

a(t) = % (cos(t) +v2cos (\/§t>), 0(z)

1 X i(x*> —1)
o(x) = %sech (§> exp (T )
The equation is of interesting and important class (see [21] and references therein). Based on the results in
[7,9,21], the problem has a quasi-periodically solitary wave solution

~cos(f) + V2 cos (V21)
~sin(e) + sin (V2) +5°

xﬁqp(x, 1) = Pigp(x, £)Pagy(x, 1) P3gp(x, 1), (4.2)
where
1
qup(x7 t) = 19
(sin() + sin (V2f) + 5)?

Pagp(x, 1) = sech (sin(f) + sin (\/Et) + 5>7

B i(x>—1)
P3gp(x,1) = exp (2(sin(t) S (V) T 5)>
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Since local and global momentum and charge are preserved we define the errors of MCL and CCL by

s Zn+l _[ Zn G n.k
(Alerr)’[Z - Mle me ) Zb Zl+l (Zl )) (43)

and

(Cerr)1 - Cle

i b ,;1)—0<z7,m)) ~: UEh) (1) (44)

m= k=1

n n

respectively. (Me,); and (Cg); reflect the local numerical properties with solving the NLSE by using
RKN discretizations (2.10), the indices / and n do not mean that the local errors are taken at the mesh
point (x,t,), for the reason that these errors are derived from the local integrations M, and Cj in the
rectangle

((xla tn)7 (xl+1 ) tn)7 (xl+1 ) tn+| )7 (xl7 tn+] ))

From the approximations (4.3) and (4.4), we know that there exists an appropriate point, which is denoted by
(x7,t:) in the rectangle and the errors are taken at this point.

As for the two global conserved quantities, the charge and total momentum, the global errors of them are
defined as

Cerr(n) = Cy(n) — C4(0) (4.5)
and

Merr(l’l) = Md(l’l) — Md(()) (46)
respectively.

It is known that for the NLSEvc considered, the local and total energy are not conserved. To observe the
evolution of the energy, notice that the exact local energy variation is given by

Bu 2050 + 0 () =0 (- "L - ) ) + 0, (5w, - ) )
= PO owrnw) - 2L ey - LR+ D)
+ 2 %y, ) (@)
and we make use of the notation (E.); = E(Y/(x],2)), and define the error of the local energy variation by
(Eerr)) = (Eex); = (Eue);/ (), (4.8)
where
Zﬂ+1 E ro_ Zn,k _ ank
= 3, BB g () )

If the total energy is conserved in the continuous case, then under numerical discretizations, the global error
of this quantity at some time step is defined by the difference between the current discrete total energy and the
initial one [11,19]. It means that the initial discrete total energy derived from the corresponding discretization is
regarded as the reference quantity to investigate the evolution of the energy. In this context, however, the total
energy is not conserved in the continuous case. Hence in the numerical experiments, the initial discrete total
energy cannot be seen as the reference quantity here at all. Now we define another discrete total energy at ¢, by

0(t,)
2

hz i:bm ( L ‘.R(l,b(x, +mhyto +n7) 0 (X1 4 Ch, t +nr)) —

1=0 m=

V(|1//(x,+cmh,t0+nr)|2)),

(4.9)
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which is obtained by replacing the numerical nodal data in (2.27) by the corresponding exact ones. The dis-
crete energy in (4.9) is another approximation to the exact total energy £(z)(¢) at ¢, and the approximation
error depends only on the truncation error of the discretization of the spatial integration. With the upper
bound of the truncation error given in [12], the approximation error of the discrete total energy in (4.9)
can be controlled by means of choosing small enough spatial stepsize 4. To make a difference from the discrete
total energy in (2.27), the discrete total energy defined here is referred to the “exact” total energy. Naturally,
we define the global error of the discrete total energy by

Eerr(n) = Ex(n) — E4(n). (4.10)
The above errors listed are all the preserving errors of local and global conservation laws, the error of solu-

tions, an important numerical characteristic, should be investigated. Here, we use the infinite norm of differ-
ences between the numerical and exact solutions, namely the following maximum error

(Merr)y = max (| R (xr, 1) = Y)W (1, 1) = ¥7))).- (4.11)
In the subsequent numerical exhibitions, we use the following notations of maximum errors

(Mer)" = max | (Mex); |, (4.12)

(Cerr)" = max|(Cer)y , (4.13)

(Eerr)" = max |(Eerr)y (4.14)

(Herr)" = max | (er,); - (4.15)

Since the exact solution (x,?) given in (4) is also exponentially small away from x = 0 for any fixing ¢, the
periodic boundary condition

lp|x:xL = l//|x:)cR7 (4 16)

are added to the problem (4.1), we take x; = —60 and xg = 60, the temporal interval [0,200]. The spatial step-
size and the temporal one are take as 7 = 0.6 and = = 0.1, respectively in the following numerical experiments.

We construct the symplectic and non-symplectic 3-stage 4-order Nystrom schemes, which can be formu-
lated as the following Butcher’s tabulars

0 |-1/4 1/4 0
12| 7/48 -1/48 0
1|16 1/3 0
/6 1/3 0
/6  2/3  1/6
and
0 0 0 0
1/2 | 17/96 —1/6 11/96
1| 1/24  2/3 —5/24

176  1/3 0
1/6  2/3  1/6

respectively. We denote the multi-symplectic RKN method, i.e., the 2-stage 4-order Gauss—Legendre colloca-
tion method
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Fig. 1. The numerical quasi-periodically solitary solutions obtained by using MS-MN3, the real part ¢(x, ) (left) and the imaginary part
p(x, 1) (right).

1oV 1 1 V3

2 \6[ 4\[ 4 6

1 3 1 3 1

2 6 4 6 4
T 1
2 2

applied to the temporal and the above 3-stage 4-order symplectic Nystrom scheme to the spatial direction, by
MS-MN3 in short. And, the non-multisymplectic one is denoted by nMS-MN3, which is concatenation of the
2-stage 4-order Gauss—Legendre collocation method in the temporal direction and the above 3-stage 4-order
non-symplectic Nestrom scheme in the spatial direction. All numerical comparisons between MS-MN3 and
nMS-MN3 are processed under the same numerical conditions. Because two methods are implicit, the fixed
point iteration method is utilized to solve the nonlinear algebraic systems generated by the numerical scheme,
each iteration will terminate when the maximum absolute error of the adjacent two iterative values is less than
10", The time cost of the scheme MS-MN3 is about 3/4 of that of the non-multisymplectic one, nMS-MN3.
Figs. 1-8 are given by means of the two methods, MS-MN3 and nMS-MN3.

Fig. 1 shows the numerical solutions of the quasi-periodically solitary wave obtained by MS-MN3. It
reflects some theoretical properties of the exact quasi-periodically solitary wave solution, e.g. the asymptotic
behavior in the space and the quasi-periodicity in the time. The results of numerical simulation with nMS-
MN3 are as good as ones with MS-MN3, we do not plot the two graphs obtained by the former any more
accordingly.

The numerical results related to the local energy variation are listed in Fig. 2. The error obtained by
Ms-MN3 is in the scale of O(107%) and that by nMS-MN3 is only O(10™"). From the top two diagrams
and bottom one, with the errors exhibited at the middle, one concludes that the multi-symplectic scheme
MS-MN3, on simulating the local energy variation, is a little better than the non-multi-symplectic one,
nMS-MN3.

Fig. 3 displays the numerical results of the total energy. The discrete total energy obtained by MS-MN3, the
corresponding one obtained by nMS-MN3 and the exact total energy are almost the same in the present scale.
As appearing in Fig. 2, the error obtained by MS-MN3 is a little better than that by nMS-MN3, the former is
of order (’)(10_3) and the other is only of (9(10_1). The two error curves evolves very similarly, they have some
reasonable oscillations and do not produce any error accumulation over the time interval. The stability of the
two high-order schemes with respect to the total energy is verified numerically.

Fig. 4 shows the maximum errors of the discrete momentum conservation law in the time interval
[0,200]. From the two graphs, the preserving order, the oscillation, the evolution of errors obtained by
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Fig. 2. The discrete local energy variation obtained by MS-MN3 (left-top) and nMS-MN3 (right-top); the middle is the maximum errors
of the local energy variation, MS-MN3 (left-mid) and nMS-MN3 (right-mid); the bottom is the exact local energy variation.

MS-MN3 and nMS-MN3 are almost the same. It is further shown in Fig. 5 that the global errors in pre-
serving the total momentum by the two schemes are very similarly. The error curves in the two figures
show numerically that the two schemes are stable in the sense of the local and global momentum conser-
vation laws (see [4]).

The maximum errors of the local charge conservation law by the two high-order schemes are exhibited in
Fig. 6. The left graph shows that the local charge conservation law is preserved in the scale of O(107'%), almost
roundoff errors of the computer by means of MS-MN3, however, the error obtained by nMS-MN3 is only of
O(107%). Similar numerical phenomena are exhibited in Fig. 7 on the global errors in preserving the discrete
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Fig. 3. Left-top: the discrete total energy obtained by MS-MN3; right-top: the discrete total energy obtained by MS-MN3; mid-left: the
global error of the total energy by MS-MN3; mid-right: the global error of the total energy by nMS-MN3; bottom: the exact total energy.

charge. Comparing the four graphs in Figs. 6 and 7, we find that the remarkable advantages of multi-symplec-
tic RKN methods are the precise preservations of the charge conservation laws.

Fig. 4 shows the maximum errors of the numerical solutions by MS-MN3 and nMS-MN3 in the time
interval [0,200], and reveals that the errors are almost the same. The peak value of the errors by MS-MN3
is about 0.1 and that by nMS-MN3 is about 0.16. The two error curves present almost the same reason-
able oscillations.
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Fig. 4. The maximum errors of the discrete local momentum conservation law, MS-MN3 (left) and nMS-MN3 (right).
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Fig. 6. The maximum errors of the discrete local charge conservation law, MS-MN3 (left) and nMS-MN3 (right).

5. Conclusions

The concatenation of symplectic Runge...Kutta methods in temporal direction and symplectic Nystno
methods in spatial direction for NLSEvc leads to the multi-symplectic integrators. It is shown theoretically
that the discrete total symplecticity in temporal direction is preserved precisely by the multi-symplectic
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